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Figure 1: Slicedit. We present a zero-shot method for text-based video editing based on a pretrained text-to-image diffusion
model. Our method can edit challenging long videos with complex nonrigid motion and occlusions, while preserving the
regions not specified in the text prompt (e.g. changing only the person into a robot without affecting the background). See
our website for video results.

Abstract

Text-to-image (T2I) diffusion models achieve
state-of-the-art results in image synthesis and edit-
ing. However, leveraging such pretrained models
for video editing is considered a major challenge.
Many existing works attempt to enforce temporal
consistency in the edited video through explicit
correspondence mechanisms, either in pixel space
or between deep features. These methods, how-
ever, struggle with strong nonrigid motion. In
this paper, we introduce a fundamentally differ-
ent approach, which is based on the observation
that spatiotemporal slices of natural videos exhibit
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similar characteristics to natural images. Thus, the
same T2I diffusion model that is normally used
only as a prior on video frames, can also serve as
a strong prior for enhancing temporal consistency
by applying it on spatiotemporal slices. Based on
this observation, we present Slicedit, a method
for text-based video editing that utilizes a pre-
trained T2I diffusion model to process both spatial
and spatiotemporal slices. Our method generates
videos that retain the structure and motion of the
original video while adhering to the target text.
Through extensive experiments, we demonstrate
Slicedit’s ability to edit a wide range of real-world
videos, confirming its clear advantages compared
to existing competing methods.

1. Introduction
Text-to-image (T2I) diffusion models have reached remark-
able capabilities, enabling high-quality image synthesis that

1

https://matankleiner.github.io/slicedit/


Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices

can be controlled by highly descriptive text prompts (Rom-
bach et al., 2022; Saharia et al., 2022; Dai et al., 2023;
Betker et al., 2023). These capabilities have been shown
to enable text-based editing of real images (Hertz et al.,
2023; Kawar et al., 2023; Brooks et al., 2023; Tumanyan
et al., 2023; Huberman-Spiegelglas et al., 2023; Zhang et al.,
2023). However, using T2I models in a zero-shot manner
for video editing is still considered an open challenge, es-
pecially when it comes to long videos with strong nonrigid
motion and occlusions.

The naive approach of using T2I models for editing a video
frame-by-frame leads to temporal inconsistencies (Wu et al.,
2023a), both over short periods of time (e.g. flickering) and
over long durations (e.g. drift in appearance). To mitigate
temporal inconsistencies, previous and concurrent video
editing methods use extended attention, which enables edit-
ing multiple frames jointly and hence improves temporal
consistency (Wu et al., 2023a; QI et al., 2023; Ceylan et al.,
2023; Khachatryan et al., 2023). However, relying solely
on extended attention often results in inconsistent editing of
textures and fine details. Other concurrent methods tackle
temporal inconsistency by using feature correspondence
across frames (Yang et al., 2023; Geyer et al., 2024). These
methods tend to fail in scenarios where the correspondences
are weak, e.g. in long videos or in videos with fast and
complex nonrigid motion.

Here we introduce a new approach, which we coin Slicedit1,
to edit videos in a zero-shot manner. Similarly to recent
and concurrent works, our method “inflates” a pretrained
T2I latent diffusion model into a model suitable for video
editing, doing so in a zero-shot manner (i.e. without fine-
tuning the model). To edit a real video, we use the DDPM
inversion method of Huberman-Spiegelglas et al. (2023)
with our inflated denoiser to obtain the sequence of noise
vectors that causes the diffusion process to generate that
video. We then re-generate the video with the text prompt
provided by the user, while fixing the noise vectors and
injecting features obtained from the inversion of the source
video, as previously shown to be useful by QI et al. (2023).

Our inflated denoiser deviates from the pretrained T2I model
in two fundamental aspects: (i) Similarly to concurrent
works, the self-attention modules are converted to extended
attention, capturing the dynamics between frames. (ii) More
importantly, in addition to denoising frames, we enforce
temporal consistency by also processing spatiotemporal
slices of the video volume. Specifically, we observe that
spatiotemporal slices share similarities with natural images
(Fig. 2), prompting us to leverage the same pretrained T2I
denoiser for their denoising. Thus, we apply the T2I model
on x − t or y − t slices within the (x,y, t) space-time
volume (left pane of Fig. 2) and merge the result with the

1Slicedit can be pronounced “slice-edit” or “sliced-it”.

denoised frames. This multi-axis denoising is key to our
method’s ability to alter only specified regions in a video
while keeping the remaining content fixed.

As we show, our method can edit videos while maintaining
temporal consistency, even in cases with strong nonrigid
motion or occlusions. As illustrated in Fig. 1, our method
preserves video structure and layout in unedited regions, e.g.
editing only the man while keeping his surroundings unal-
tered. We evaluate Slicedit on real-world videos, both short
and long, and across a diverse range of motion types. Com-
pared with state-of-the-art zero-shot video editing methods,
our results demonstrate a clear advantage for utilizing the
untapped potential of spatiotemporal slices.

2. Related work
Tuning T2I models for video editing. A common ap-
proach for harnessing pretrained T2I models for video edit-
ing, is to introduce architectural changes to the model and
then tune it on videos (Wu et al., 2023a; Liu et al., 2023;
Wang et al., 2023; Xing et al., 2023; Esser et al., 2023; Feng
et al., 2023). The architectural modifications are usually in
the form of insertion of (spatio) temporal layers, like depth-
wise 3D convolution, extended attention across frames, and
1D self-attention across time. Those modifications enhance
the model’s ability to maintain temporal consistency. The
tuning process usually starts from the weights of the pre-
trained T2I model, where in some cases only the weights
of the new layers are tuned, and uses a large dataset of text-
video pairs. This results in a computationally intensive and
time consuming training process. Alternatively, the tuning
can be done on a single video (the one being edited), yet
this approach is time consuming at inference, as each video
requires its own tuning process.

T2I models for zero-shot video editing. Some methods
use T2I models for video editing without any parameter
tuning, in a zero-shot manner. Our work falls under this
category. Similarly to methods that require fine-tuning,
most zero-shot methods adjust the attention modules of the
model to capture associations across time (Khachatryan
et al., 2023; QI et al., 2023; Ceylan et al., 2023; Yang et al.,
2023; Geyer et al., 2024; Cong et al., 2024; Zhang et al.,
2024). Relying on extended attention for temporal con-
sistency, as done in (Khachatryan et al., 2023; QI et al.,
2023), results in inconsistent editing of textures and fine
details. Thus, some methods (Ceylan et al., 2023; Yang
et al., 2023; Zhang et al., 2024) also use other mechanisms,
like conditioning on depth or edge maps, usually using a
pretrained ControlNet (Zhang et al., 2023). This improves
the quality and temporal consistency of the edited video, but
introduces artifacts when the control signal is partial or inac-
curate. Another method, used by Yang et al. (2023); Geyer

2



Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices

𝑥

𝑦

𝑡

𝑦 − 𝑡 slices extracted from 

natural videos

Images sampled from 

Stable Diffusion

“motion blur”

“painting of geological 
rock folding in 

sedimentary layers”

unconditional 

samples

Figure 2: Diffusion model as a spatiotemporal slice prior. The left pane shows the (x,y, t) space-time volume of a video.
The middle pane shows y − t slices of natural videos. The right pane shows images generated by Stable Diffusion using
several text-prompts. The generated images have similar characteristics to spatiotemporal slices of natural videos. This
suggests that a pretrained text-to-image model can serve as a good prior for spatiotemporal video slices.

et al. (2024), is to edit only key frames and propagate their
features to all other video frames. This method strongly
enforces temporal consistency, however, it breaks under fast
motion, severe occlusions, and when the correspondences
weaken over time. Our method also uses extended atten-
tion, however we also use spatiotemporal slices as a way of
enforcing temporal consistency.

Spatiotemporal slices of the space-time volume. The
x− t or y− t slices of space-time video volumes have been
used for various different tasks, including energy models
of motion perception (Adelson & Bergen, 1985), epipolar
plane image analysis (Bolles et al., 1987), motion anal-
ysis (Ngo et al., 2003), video mosaics (Rav-Acha et al.,
2005), video quality assessment (Vu & Chandler, 2014)
and temporal super resolution (Zuckerman et al., 2020). In
particular, Rav-Acha et al. (2005) used the spatiotemporal
slices of a video to generate new videos, leveraging their
similarity to natural images. In addition, Zuckerman et al.
(2020) observed that small patches in natural videos are sim-
ilar across both the spatial and spatiotemporal dimensions
of the space-time volume. Our method also leverages the
similarity between spatiotemporal slices and natural images,
in that we use an image prior to regularize spatiotemporal
slices so as to enforce temporal consistency.

3. Preliminaries
Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020) are a class of generative models that aim to
approximate a data distribution through a progressive de-
noising process. Generating a sample x0 from those models
starts by randomly drawing Gaussian noise, xT ∼ N (0, I),
and recursively denoising it in T denoising steps. The de-
noiser ϵθ(·) is usually a U-Net (Ronneberger et al., 2015),
trained to predict the noise at each timestep. This denoiser

can be conditioned on various types of signals, usually via
a cross-attention module. Here we use models that are
conditioned on a text prompt, p, yielding ϵθ(·, p). The dif-
fusion process can be applied in pixel space or in the latent
space of some encoder, which results in a latent diffusion
model (Rombach et al., 2022). In the latter case, the gener-
ated samples are decoded back to pixel space by a decoder.

A pretrained DDPM can be used not only for generating syn-
thetic images, but also for editing real images. A common
approach to do so involves an inversion process, which ex-
tracts noise vectors that generate the given image when used
in the sampling process. Many methods focus on inversion
for the DDIM sampling scheme. Huberman-Spiegelglas
et al. (2023) introduced an editing approach that is based
on inversion of the DDPM scheme. This method has been
illustrated to more strongly preserve the structure of the
source image than DDIM inversion, and thus to lead to bet-
ter editing results. The method of Huberman-Spiegelglas
et al. (2023) starts by generating increasingly noisy ver-
sions of the input image, one for each diffusion timestep.
Subsequently, the noise vector for each timestep τ of the
generation process is extracted from xτ−1 and ϵθ(xτ , p)
(see App. H.1 for more details). During the inversion pro-
cess, the T2I denoiser can be optionally conditioned on
a source prompt, psrc, describing the input image. After
the noise vectors have been extracted, they are used in the
DDPM generation process, while conditioning the denoiser
on a target prompt, ptar, describing the desired output. The
edited image preserves fidelity to the original image while
adhering to the new prompt.

4. Method
Our method requires the following inputs: a video volume
I0, a source prompt psrc describing the video, and a target
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Figure 3: Applying a pretrained image denoiser to spa-
tiotemporal slices. The plot shows the MSE obtained when
applying a pretrained Stable Diffusion denoiser to noisy
video frames, spatiotemporal slices and permuted frames
(all in latent space). The MSE for spatiotemporal slices is
comparable to (even lower than) the MSE for frames, and
both are lower than the MSE for permuted frames, which
are out-of-distribution for the denoiser.

prompt ptar describing the desired edited video. The goal is
to generate an edited video J0 that adheres to ptar while pre-
serving the original motion and layout of I0. As depicted in
Fig. 4, the axes of the video space-time volume are denoted
by (x,y, t), where x−y planes correspond to video frames
and y − t planes are referred to as spatiotemporal slices.

4.1. Inflated Denoiser

We inflate the T2I denoiser ϵθ(·, p) into a video denoiser
ϵV
θ (·, p) by performing the following modifications.

Extended attention. The original denoiser, ϵθ(·, p), is
a U-Net, comprised of residual, cross-attention and self-
attention blocks (Rombach et al., 2022). Following the
general approach proposed by Wu et al. (2023a) and used
by others (Geyer et al., 2024), we modify the self-attention
within each transformer block into an extended attention
module. This enables the attention module to process mul-
tiple frames together, resulting in an attention map with
correspondence between multiple frames. Our extended
attention is calculated between each frame and a set of 3
key-frames, consisting of a global frame strategically po-
sitioned at half of the video length, along with two local
frames which are chosen as the 2nd and 5th from within
the 6-frame processing window containing the target frame.

The global key-frame facilitate collaborative editing across
the entire video, while the local key-frames help preserve
temporal consistency among closely situated frames. The
new denoiser, denoted ϵEA

θ (·, p), does not require any further
training, similarly to previous works (QI et al., 2023; Ceylan
et al., 2023; Geyer et al., 2024). More details can be found
in App. F and an illustartion can be found in Fig. S8.

Spatiotemporal slices. We observe that Stable Diffusion
can produce images that share similarities with spatiotem-
poral slices of real videos. This observation is illustrated
in Fig. 2, where y − t planes from randomly chosen natu-
ral videos are presented alongside images generated using
Stable Diffusion. This suggests that spatiotemporal slice
images exist within the generative manifold of Stable Dif-
fusion so that the same pretrained T2I denoiser, ϵθ(·, p),
can effectively function as a denoiser for spatiotemporal
slices. This observation is supported by Fig. 3, which shows
that the MSE achieved by the pretrained Stable Diffusion
denoiser when applied to spatiotemporal slices (yellow) is
comparable to (and even lower than) the MSE it achieves
for video frames (blue). For comparison, when applying
the denoiser on out-of-distribution data like randomly per-
muted frames, the MSE is much higher (green). For more
details see App. G. With this observation, we apply the
denoiser ϵθ(·, p) separately on each y − t slice, utilizing
an empty prompt p for conditioning (making the denoiser
unconditional). This choice aligns with the observations
demonstrated in Fig. 2 and is supported by an ablation study
provided in App. D. We refer to this spatiotemporal denoiser
as ϵS

θ(·, p). Note that the original denoiser ϵθ(·, p) operates
over representations of dimension (64, 64, 4), implying that
ϵS
θ(·, p) can only be applied to videos with 64 frames. We

explain how to handle shorter and longer videos in Sec. 5.

Combined zero-shot video denoiser. Intuitively, the ex-
tended attention denoiser, ϵEA

θ (·, p) that operates on frames
produces a spatially coherent volume, while the spatiotem-
poral denoiser, ϵS

θ(·, “ ”), generates a temporally consistent
volume. Thus, a combination of both should enforce both
spatial coherence and temporal consistency. Following this
intuition, we set the combined video denoiser to be

ϵV
θ (·, p) =

√
γϵEA

θ (·, p) +
√
1− γϵS

θ(·, “ ”). (1)

The hyperparameter γ balances between the two denoisers
while preserving the variance of the predicted noise. Note
that each denoiser serves a distinct purpose, hence requiring
different prompts. The right pane of Fig. 4 depicts this
combined denoiser.

4.2. Video Editing

To edit an input video, I0, we adopt the recently proposed
DDPM-inversion method of Huberman-Spiegelglas et al.
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Figure 4: Slicedit overview. Left: To edit a video I0, we apply DDPM inversion using our video-denoising model, which is
an inflated version of the T2I model. This process extracts noise volumes and attention maps for each diffusion timestep.
Subsequently, we run DDPM sampling using the extracted noise space, while injecting the extended attention maps at
specific timesteps. The inversion and sampling are performed while conditioning the inflated denoiser on the source and
target text prompts, respectively. Right: Our inflated denoiser employs two versions of the pretrained image denoiser. A
version with extended attention is applied to x− y slices (blue), and the original denoiser is applied to y − t slices (red).
The two predicted noise volumes are then combined into the final predicted noise volume (marked in green).

(2023). We first invert the entire video volume by extracting
the noise volumes for all diffusion timesteps using ϵV

θ (·, psrc).
Note that this step is fundamentally different from methods
that use per-frame inversion (Geyer et al., 2024). Then, we
perform DDPM sampling with ϵV

θ (·, ptar), while using the
noise volumes obtained from the inversion. Note that psrc
and ptar are prompts that describe the input video and the
desired edited video, respectively. Therefore, they are fed
in ϵEA

θ (·, p). As noted earlier, the empty prompt in ϵS
θ(·, “ ”)

is used in the inversion as well as in the sampling processes.
In addition, during the sampling process we inject the ex-
tended attention maps of the source video into the extended
attention maps of the edited video. This injection, inspired
by Tumanyan et al. (2023), helps to preserve the structure
and motion of the original video in the edited result. While
reminiscent of the approach employed in FateZero (QI et al.,
2023), our methodology differs in the treatment of atten-
tion maps. Unlike the blending process in FateZero, our
method involves directly copying attention maps from the
input video into the edited one. Figure 4 depicts an overview
of the entire video editing process. Our editing algorithm is
summarized in App. H.2.

5. Experiments
5.1. Implementation Details

We use the official weights of Stable Diffusion v2.12 as
our pretrained T2I denoiser. As mentioned in Sec. 4, this
model’s latent space dimensions are (64, 64, 4). Thus, naive
application of our method is possible only for videos with

2https://huggingface.co/stabilityai/
stable-diffusion-2-1

64 frames. For videos with less than 64 frames (and more
than 32), we use RIFE (Huang et al., 2022), a state-of-the-
art frame interpolation method, to double the number of
frames. After editing, we temporally subsample the video
back to the original number of frames. For videos exceed-
ing 64 frames, we split the video volume into overlapping
segments. The extent of this overlap is determined by the
total number of frames. At every diffusion step, we average,
while preserving variance, the predicted noise volumes from
the overlapping segments.

We use DDPM inversion with T = 50 steps. For the genera-
tion process, we use DDPM sampling starting from timestep
T−Tskip, where in all our experiments we fix Tskip = 8. The
parameter Tskip controls the extent to which the edited video
adheres to the input video. We set the classifier free guid-
ance (Ho & Salimans, 2021) strength parameter to 10 in ϵEA

and to 1 in ϵS. Moreover, we inject the extended attention
features from the source video to the target video in 85%
of the sampling process. We set γ, the balancing parameter
in Eq. (1), to 0.8. All results in the paper, in the SM, and
on our website were produced with these hyperparameters.
For an ablation study on our design choices please refer to
Sec. 5.5 and App. D. The effect of different hyperparameter
configurations is discussed in App. E.

5.2. Comparisons

Dataset. We evaluate our method on a dataset of videos,
which we collected from the DAVIS dataset (Pont-Tuset
et al., 2017), the LOVEU-TGVE dataset (Wu et al., 2023b)
and from the internet. These videos vary in length and
aspect ratio and they depict animals, objects and humans,
exhibiting different types of motion. Their lengths vary
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A shiny silver robot is hiking in front of mountains

A man is spinning a basketball on his finger

Steph Curry is spinning a basketball on his finger

Swans are swimming in the lake
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Figure 5: Slicedit Results. Our method edits only the specified regions of the input video according to the target prompt
while keeping the unspecified regions the same. The output video maintains coherence between frames (i.e., the same robot,
origami rabbit and cheetah across the frames). Video results are available on our website.

between 32 and 210 frames. Our dataset comprises 60 text-
video pairs, for which we manually specified the source and
target prompts. We use this dataset to evaluate all competing
methods. Some methods remove a few frames from the end
of the input video. For fair comparison we ensure all edited
videos have the same number of frames, by removing frames
from the results of other methods.

Competing methods. We compare our method against
state-of-the-art recent and concurrent methods, whose code
is publicly available at the time of writing. The competing
methods are Pix2Video (Ceylan et al., 2023), Rerender A
Video (Yang et al., 2023), TokenFlow (Geyer et al., 2024)
and ControlVideo (Zhang et al., 2024). ControlVideo aims
to generate a new video based on a text prompt and a condi-
tioning signal extracted from the original video, e.g. depth

maps and edge maps. Therefore, their method generates
videos that adhere only to the motion and structure of the
original video, but do not preserve its textures and colors.
More details about the competing methods can be found
in App. C. We excluded Text2Video Zero (Khachatryan
et al., 2023) and FateZero (QI et al., 2023) from our com-
parisons due to their memory requirements. On a single
RTX A6000 GPU, the one we used for running all methods
including ours, these methods could edit videos of only up
to 30 frames. Additionally, Tune-A-Video (Wu et al., 2023a)
and Flatten (Cong et al., 2024) were omitted due to their
extended processing time and memory requirements, re-
spectively, which do not permit large-scale comparisons. A
qualitative comparison to both these methods can be found
in Figs. S4, S5.
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Figure 6: Qualitative comparison. We compare our method against other state-of-the-art zero-shot video editing methods.
Our method edits only the specified region, according to the text prompt, and keeps the unspecified regions unchanged. The
competing methods often change the entire frame, specified and unspecified regions alike. See videos on our website.

5.3. Qualitative Evaluation

Figures 1 and 5 present editing results obtained with Slicedit
on challenging videos involving camera motion and com-
plex nonrigid object motion, including occlusions. In all
cases, our method manages to successfully edit the input
videos according to the text prompt.

Figure 6 presents a comparison between our method and
the competing methods. For ControlVideo, we used depth
conditioning. Our method adheres to the text prompt while
doing a better job than the other methods at preserving the
unspecified regions. This is true for both complex motion
(left), and for smooth motion (right).

Specifically, in the case of the parkour video, Pix2Video,
Rerender A Video and ControlVideo all exhibit major in-
consistencies in both the edited robot and the background.
In the result of Rerender A Video, the robot fades away in
the last part of the edited video, as can be seen in the right
frame. TokenFlow’s edit is somewhat more successful, yet
the robot is jittery and blurry. In addition, it can be clearly
seen that all competing methods drastically change the back-

ground, even though the target prompt only refers to the
person. Pix2Video and TokenFlow turn the background into
a gray, CGI-styled city, a change not specified in the text
prompt. Rerender A Video, while retaining some of the
background’s color palette, also makes significant changes.

In the case of the cat video, which exhibits smoother motion,
Rerender A Video and TokenFlow generate blurry images
while Pix2Vid and ControlVideo show inconsistency in the
motion. More frame comparisons are provided in App. B
and video comparisons appear on our website.

5.4. Quantitative Evaluation

We conduct a numerical evaluation using metrics that quan-
tify editing fidelity, structure preservation, and temporal
consistency. Following prior works, we evaluate the edit-
ing fidelity using the average cosine similarity between the
image CLIP embeddings of the frames and the text CLIP
embedding of the target prompt. For structure preservation,
we report the LPIPS distance between the source and edited
frames. The very high LPIPS score of ControlVideo is due
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Figure 7: Numerical comparison to competing methods. We compare our method and to the competing methods on
60 text-video pairs. The left pane shows the editing fidelity, measured via the CLIP score, vs. the faithfulness to the
original video, measured with LPIPS. The right pane shows the editing fidelity vs. temporal consistency, measured via flow
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extended-attention injection. From left to right, the values of these parameters are (8,10,85) and (8,14,85). The first setting
is the one used to produce all the results in the paper, appendix, and the website.

Slicedit

Slicedit TokenFlow

Rerender A 
Video

82.6% 17.4%

67.9% 32.1%

Figure 8: User study. We report the percentage of users
who preferred our method over Rerender A Video and To-
kenFlow, when answering which edited video best preserves
the essence of the original video.

to its conditioning only on a signal (e.g. depth or edges)
from an existing video. To assess temporal consistency, we
compute the error between the optical flow fields of the
source and edited videos. Specifically, we compute optical
flow using RAFT (Teed & Deng, 2020) between every pair
of consecutive frames in both the original and edited videos.
Subsequently, we calculate mean L2 distance between these
flow fields, while removing pixels with left-right inconsis-
tencies in the source video. Importantly, unlike the popular
warping error (Lai et al., 2018; Ceylan et al., 2023; Geyer
et al., 2024), which is computed by warping the edited
frames using the flow field of the original one, the flow error
we use captures only motion preservation, and is completely
disentangled from appearance inconsistencies.

Figure 7 presents our quantitative results compared to the
competing methods. We show results for our method with
two parameter configurations, which lead to different bal-
ances between text adherence and fidelity to the input video

in motion and appearance (see Tab. S4). Our zero-shot
editing demonstrates superior LPIPS scores and flow error,
successfully adhering to the text prompt for video editing.
In contrast, the competing methods exhibit video edits with
some loss of fidelity to the original content and poorer tem-
poral consistency.

We additionally evaluated our method via a user study, in
which each participant was shown the original video, the
target prompt, and our edited result next to a competing
edited result. The order between the two edited results was
random. Users were instructed to select the edited video
that best preserves the essence of the original video. A
screenshot from the user study can be found in Fig. S6.
We conducted two separate user studies through Amazon
Mechanical Turk, where 50 workers compared our method
against TokenFlow and Rerender A Video over our entire
dataset. The user study result, reported in Fig. 8, reveals that
humans clearly prefer our edited videos over those of the
competing methods in terms of preservation of unspecified
regions.

5.5. Ablation Study

We next study the importance of each of the components that
we used for improving temporal consistency and preserving
structure: (1) denoising spatio-temporal slices, (2) extended
attention injection, (3) DDPM inversion over DDIM inver-
sion, and (4) inversion for the entire volume rather than
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Figure 9: Ablation study. Each row displays the results
without a key component of our method. The last row,
displays the results achieved by Slicedit. Video comparisons
are available on our website.

per-frame. We note that the incorporation of extended at-
tention in the inflated denoiser also contributes to the final
results, however this mechanism is already well established
and has been ablated in previous works. As such, we will
not provide an ablation for it here.

As can be seen in Fig. 9, removing the spatiotemporal de-
noising (second row) harms the temporal consistency of the
edited video, causing the edited object to change appear-
ance over frames. Without injecting the extended attention
maps of the original video (third row), the resulting edited
video is not loyal to the layout and motion of the original
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A man is jumping → A shiny silver robot is jumping

Figure 10: Volume inversion ablation. TokenFlow results
for DDPM and DDIM per-frame inversion. Videos are
available on our website.

E
d
it
e
d

In
p
u
t

A small dog is looking out a car window

A small elephant is looking out a car window

Figure 11: Failure cases. Our method is limited to struc-
ture preserving edits, and cannot modify e.g. a dog into an
elephant. Failure case videos are available on our website.

video. When using DDIM instead of DDPM inversion with
the same parameters (fourth row) our method is not able to
successfully edit the video according to the text prompt.

For evaluating the effect of performing volume rather than
per-frame inversion, it is not feasible to use our inflated
denoiser. Hence, we study this with the TokenFlow method,
which inherently relies on per-frame inversion. Figure 10
shows the results of TokenFlow with per-frame DDIM and
with per-frame DDPM inversion. As can be seen, both cases
lead to blurry results. This highlights the importance of
performing volume inversion.

For a more detailed ablation, including changing the text
prompt of the spatio-temporal denoiser and inversion with
an empty source text, comparison of quantitative metrics
for each configuration and more frame comparisons, see
App. D. Video comparisons are available on our website.

6. Conclusion
We introduced Slicedit, a zero-shot text-based video edit-
ing method utilizing a pretrained text-to-image diffusion
model. Our method inflates the model to work on videos
using several modifications. Most importantly, it applies the
pretrained denoiser, initially designed for images, also on
spatiotemporal slices of the video. To edit videos, we use
our inflated denoiser in a DDPM inversion process, in con-
junction with injection of the extended attention from the
source video to the target video. Our method outperforms
existing techniques, successfully editing the video while pre-
serving the unspecified regions without compromising on
temporal consistency. We evaluated it by measuring editing
fidelity, structure reservation, and temporal consistency met-
rics, supplemented by a user study. While our method excels
at preserving the structure of the input video, it encounters
challenges with global editing tasks, such as converting the
frames of a natural video into paintings. In addition, our
method is limited to structure-preserving edits. This stems
from using DDPM inversion with attention injection. An
example failure case is shown in Fig. 11.
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Societal Impact
Our goal in this work is to suggest a different method for
leveraging T2I foundation models for video editing, over-
coming some of the weaknesses of previous and concurrent
works. Our and similar methods may potentially be used to
edit videos to create fake or harmful content. We believe
that it is crucial to develop and apply tools for detecting
videos edited using generative AI methods, such as ours. In
addition, mitigating biases and NSFW content from large
datasets, used for training foundation models, will also con-
tribute for safer generative AI usage, including using T2I
models for video editing.
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A. Additional Results
Fig. S1 displays additional results for our video editing.
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Figure S1: Additional editing results using our method.

13



Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices

B. Additional Visual Comparisons
As mentioned in Sec. 5, we omitted Tune A Video from the quantitative comparison due to their extended processing time,
as shown in Tab. S1. Here we provide a qualitative comparison for this method on 4 different text-video pairs. As can be
seen in Figs. S4, S5, Tune A Video is able to adhere to a text prompt through optimization. However, this optimization
process often results in undesired global changes in the edited video. For example, the photorealistic waves surrounding the
surfing man in the right pane of Fig. S4 turn into painted-like waves.

We also provide here quantitative comparisons to Flatten for videos with 32 frames, which can be seen in Fig. S4. Flatten
results keep the unspecified regions similar to the original video. For the cat video, Flatten edit did not kept the identity of
the lion across different frames. The lion’s face in the middle frame is very similar to the original cat’s, and is quite different
from the lion’s face on the right frame. As Flatten’s memory requirement made it not possible to edit videos longer than 32
frames on a single RTX A6000 GPU, which we used for our method and all competing methods, we do not provide here
more results of this method.

ControlVideo aims to generate a video based on a text prompt and a condition signal from the original video. Therefore, its
results adhere only to the original video motion and structure, but not to the original video colors and and textures. As a
result, the unspecified regions in their results are always different than the original video’s, as can be seen in all the figures
below, Here we provide qualitative results for ControlVideo with depth maps conditioning. For depth estimation we used
MiDaS DPT-Hybrid (Ranftl et al., 2021), as in the ControlVideo paper. Quantitative results for canny edge (Canny, 1986)
conditioning are available at Fig. 7 and at Tab. S2.

Figs. S2-S5 also illustrate that the competing methods often introduce global changes to the entire video, resulting in editing
of regions unrelated to the target text together with the related regions. These global changes almost always include color
changes, illustrated by the eagle example in Fig. S3 and the cows example in Fig. S4. It also includes changing objects’
shapes as the grass in the cat example in Fig. S4, and changing the background. Background changes can be seen in the
dancing man example in Fig. S2 and the penguin example in Fig. S5, where the competing methods completely changed
the background. More subtle changes to the background also occurs, as in the running man example in Fig. S2, where all
competing methods changed the village behind the running man.

It can also be noticed that some of the competing methods failed to adhere to text prompt (Pix2Video in the eagle eaxmple
in Fig. S3, TokenFlow in the bird example in Fig. S3), to the original video motion (TokenFlow in the cows example in
Fig. S4), or produce inconsistent editing or blurry output (ControlVideo in Figs. S2, S3, Rerender A Video and TokenFlow
in the cat example in Fig. S4).

Video results of the comparisons can be found on our website.
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A man is running → Usain Bolt is runningA man is dancing → A shiny silver robot is dancing
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Figure S2: Additional qualitative comparisons.
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Figure S3: Additional qualitative comparisons.
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Figure S4: Additional qualitative comparisons.
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Figure S5: Additional qualitative comparisons.
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C. Comparisons
C.1. Competing Methods

We compare our method with competing methods whose official implementation was publicly available at the time of
writing: Pix2Video, TokenFlow, Rerender A Video and ControlVideo. Pix2Video (Ceylan et al., 2023) changes the self
attention of a pretrained T2I model into extended attention. It also uses depth estimation as part of the input to the T2I model.
TokenFlow (Geyer et al., 2024) and Rerender A Video (Yang et al., 2023) edit key frames and propagate their features to the
rest of the frames in a zero-shot manner. Rerender A Video also utilizes optical flow and edge maps to guide the editing
process. ControlVideo (Zhang et al., 2024) utilize a trained ControlNet (Zhang et al., 2023) for controllable text to video
generation, using a text prompt and condition signal from the original video. We compared here to ControlVideo with depth
maps and canny edge (Canny, 1986) conditioning, as suggested in their paper. We used MiDaS DPT-Hybrid (Ranftl et al.,
2021) for depth estimation.

We followed the instructions provided by the authors in their official implementation for setting and executing their code.
ControlVideo For Pix2Video, ControlVideo and TokenFlow we used the hyperparameters described in their paper and used
in their official implementation. For TokenFlow it included sampling with negative prompt. For ControlVideo it included
sampling with positive prompt and negative prompt.

As detailed in their paper, Rerender A Video tunes their editing hyperparameter per video. In addition, their official
implementation includes sampling with “negative” and “additive” prompts that are tuned per video. Additive prompts are
prompts that include words that are known to improve T2I model results, as “high-quality”. As it is impractical in our case
to tune hyperparameters for each text-video pair, or negative and additive prompts for each text-video pair, we used the most
common hyperparameters found in the official implementation of Rerender A Video, and did not sample with negative or
additive prompts.

C.2. Running Time

Table S1 compares the running time of our method against the competing methods. We used the same 64 frames video for
all methods, which we executed on the same RTX A6000 GPU. We consider running time as processing time (inversion,
tuning) and editing time together.

The running time of Rerender A Video changes according to the number of key frames. This hyperparameter can be tuned
per video. According to their paper, the recommended number of key frames is between 5 to 20, where they used 10 key
frames. We followed their selection and used 10 key frames in all our evaluations, as well as in this running time comparison.

The running time of Flatten is given for 32 frames video, as its memory requirements made it inapplicable to longer videos
on the RTX A6000 GPU we used. We marked it by with * in the table.

Table S1: Running time comparison

— Tune A Video ControlVideo Flatten* Pix2Video Rerender A Video TokenFlow Ours
Time [min] 359 6 10 15.5 9 16.25 33.7
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C.3. Metric Comparison

In addition to the metrics presented in Sec. 5, we also measure video coherence using CLIP3 (Radford et al., 2021). We
embed each pair of consecutive frames of the edited video into CLIP image space and report the average cosine similarity of
all video frame pairs. This metric can also be computed over the original videos, providing a reference for the typical values
associated with a video exhibiting natural coherence.

In the context of Flow error, explained in Sec. 5.4, we remove pixels that do not match the left-right consistencies calculated
over the original video. Specifically, We calculate the distance between the flow in each frame and the subsequent frame as
well as the reverse direction. Pixels are excluded from the error calculation if the disparity between the flows exceeds 1
pixel.

The following table includes the metric numerical results as used for creating Fig. 7 in addition to the metric mentioned above.
It is worth noting that the CLIP-consistency metric yields nearly identical values across all methods, closely resembling the
CLIP consistency of the original videos.

Table S2: Quantitative Comparison

Method CLIP-Text ↑ CLIP-Consistency Flow Err. ↓ LPIPS ↓
Original — 0.982 — —
Pix2Video 0.343 0.982 0.55 0.45
Rerender A Video 0.316 0.983 2.5 0.4
TokenFlow 0.334 0.986 0.4 0.35
ControlVideo (edge) 0.322 0.975 2.88 0.65
ControlVideo (depth) 0.321 0.977 3.014 0.71
Ours 0.329 0.982 0.252 0.159

3https://github.com/openai/CLIP with ViT-B/32
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C.4. User Study

Below we present a screenshot from our user study interface. The user is given the source video along with our edited video
and another competing method’s edited video (Rerender A Video or Tokenflow). The user is instructed to choose the edited
video that maintains the essence of the original video.

Figure S6: A screenshot from our user study.
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D. Ablation Study
In this section, we analyze the effectiveness of our design choices through an ablation study. Note that whenever we modify
a specific aspect of the method, all other components remain unchanged. We evaluate each modification on our dataset
(described in Sec. 5). The quantitative results are summarized in Tab. S3.

D.1. Spatiotemporal Slices

To justify the utilization of spatiotemporal slices as a component of our zero-shot video editing method, we conducted an
ablation study by excluding ϵS

θ from the inversion and sampling process. Moreover, we extended the ablation study by
including a denoiser over x− t slices in addition to y − t slices. In this scenario, ϵS

θ is computed as an average of these two
denoisers. We conducted additional experiments by employing a different text denoiser than the empty string. Specifically,
the prompts used are depicted in the right pane of Fig. 2, where text1 =“painting of geological rock folding in sedimentary
layers” and text2 =“motion blur”.

Table S3 shows the effectiveness of the spatiotemporal slices component in our method. Excluding this component results in
a higher Flow error (first row). Incorporating the x− t slices into the calculations does yield a slight improvement in the
Flow error and LPIPS score (second row), yet, imposes a longer running time. Finally, the results obtained with different
text prompts for ϵS

θ exhibit minimal influence (third and fourth rows).

D.2. Inversion and Sampling via DDIM

We performed an additional ablation by replacing the DDPM inversion with DDIM inversion (Song et al., 2020). The
inflated denoiser explained in Sec. 4 is being used as well as the extended attention injection. However, the inversion and the
sampling process use the DDIM schemes. We keep the hyperparameters as before while acknowledging that scanning for
the optimal hyperparameters may affect results. The result shown in Tab. S3, fifth row, highlights the significance of DDPM
inversion in our method in editing ability (CLIP-Text score) and temporal consistency (Flow error).

D.3. Extended Attention Injection

To assess the effectiveness of injecting extended attention from the source to the target video, we evaluate it by excluding
this component from the method. As anticipated, the results in Tab. S3, sixth row, demonstrate the importance of this module
in our method for time consistency.

D.4. Empty Prompt Inversion

We additionally assess the importance of the source prompt used during the inversion phase. The results, detailed in Table S3
under the seventh row, indicate that they are less optimal.

Table S3: Ablation study. Evaluation when changing some of the method’s design choices. The last row of the table
represents the method without any change.

CLIP-Text ↑ CLIP-Consistency Flow Err. ↓ LPIPS ↓
Original — 0.982 — —
without y − t slices (γ = 1) 0.335 0.982 0.279 0.207
adding x− t slice 0.329 0.982 0.248 0.155
ϵS(·, text1) 0.30 0.982 0.252 0.161
ϵS(·, text2) 0.30 0.982 0.252 0.161
DDIM-inversion 0.29 0.97 0.55 0.19
exclude ext-att injection 0.348 0.982 0.452 0.292
empty prompt inversion 0.323 0.983 0.253 0.182
Ours 0.329 0.982 0.252 0.159
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D.5. Visual Illustration of the Effects of our Design Choices

Figure S7 illustrates the importance of each component of our method. As can be seen in the frame comparison, and in a
clearer way in the video comparison available on our website, without the spatiotemporal slices, the resulted video lacks
temporal consistency. Specifically, each frame displays a different edit outcome, resulting in a jittery video. Without the
extended attention injection the resulted video adheres to the text prompt but disregards the original video layout. When
using DDIM inversion with the same parameters as used for DDPM inversion our method is not able to successfully edit
the video according to the text prompt. For additional results with different configurations of DDIM inversion and more
comparisons between DDPM and DDIM inversion see our supplemental website.
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Figure S7: Ablation study.
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E. Hyperparameters
We evaluate the experiment (described in Sec. 5) with two different hyperparameters values of Tskip, strength, and the
percentage of extended attention injection

Table S4 provides a summary of the quantitative results. While the (8,14,85) configuration yields a slightly higher CLIP-
Text score, the (8,10,85) configuration exhibits superior temporal consistency and minimizes LPIPS. We chose the latter
configuration as the default for our method, employed to produce all the results in the paper, the Appendix, and the website.
It is important to note that we did not explore different strengths for ϵS

θ and ϵEA
θ . Figure 7 illustrates the results obtained with

the varied hyperparameters, providing a comparison with the competing methods.

Table S4: Metrics over different hyperparameter set. Table shows the metrics over a different hyperparameter set (Tskip,
strength, injection).

CLIP-Text ↑ CLIP-Consistency Flow Err. ↓ LPIPS ↓
Original — 0.982 — —
Ours (8, 14, 85) 0.332 0.982 0.275 0.22
Ours (8, 10, 85) 0.329 0.982 0.252 0.159
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F. Extended Attention
Self-attention (Lin et al., 2017; Vaswani et al., 2017) is attention mechanism that allows the model to relate to different parts
of the same input. In images, self-attention, considers pixel location in feature maps to calculate similar correlation, for a
given image.

Given a video frame, xt, or its latent representation, zxt , the self attention operation starts by projecting it to queries Q, keys
K and values V of dimension d by using learnable projection matrices, WQ,WK ,WV . The attention is then computed as
follows

Attention(Q,K, V ) = Softmax
(
QKT

√
d

)
· V. (S1)

This self-attention mechanism is suited for an image, or a single frame, but not for handling multiple frames together. Thus,
an extended attention mechanism, a sparse version of causal attention, applying the attention mechanism to multiple frames
was suggested by Wu et al. (2023a) for video editing. This attention mechanism or some version of it, dubbed in previous
and concurrent works as spatiotemporal attention, cross-frame attention and extended attention (as we use in this work),
is used in various image editing methods, ones that require tuning and zero-shot alike (Wu et al., 2023a; QI et al., 2023;
Ceylan et al., 2023; Liu et al., 2023; Wang et al., 2023; Yang et al., 2023; Geyer et al., 2024; Xing et al., 2023)

Extended attention enables the attention module to process multiple frames together, resulting in an attention map with
correspondence between multiple frames. Given multiple video frames, {xt, xt+a, xt+b, xt+c, ...} where {a, b, c, ...}, are
some scalars, or their latent representation {zxt , zxt+a , zxt+b , zxt+c , ...}, the queries, keys and values are

Q = WQ · zxt ,

KE = WK · [zxt , zxt+a , zxt+b , zxt+c , ...],

V E = WV · [zxt , zxt+a , zxt+b , zxt+c , ...],

(S2)

where [·] denotes the concatenation operation.

Thus, the extended attention can be formulated as

Extended-Attention(Q,KE , V E) = Softmax
(
QKE

√
d

)
· V E . (S3)

Our extended attention is calculated between each frame and a set of three key-frames, consisting of one global frames
positioned at half of the video length, along with two local frames which are chosen from within the processing batch. Our
extended attention implementation is illustrated in Fig. S8.

Note that while we implement extended attention in all transformer blocks, we use extended attention injection only in
layers 4-11 in the upsample blocks of the U-Net, similarly to Tumanyan et al. (2023).
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Frame Global key Frame Local key Frame

Processing batch

Transformer2DModel

self attention
cross attention

Transformer2DModel
cross attention

ResnetBlock

EA

ResnetBlock

Transformer2DModel
cross attention

self attention EA

self attention EA

(a)

CrossAttnBlock2D(b)

Figure S8: Extended attention. (a) We calculate the extended attention between each frame (circle) within a processing
batch (rectangle), and a set of three key-frames. In our implementation, the processing batch is 6. The key-frames are
composed of a fixed global key-frame (red circles) and two local key-frames (blue circles). The global key-frame is located
at half of the video duration. The Local key frames are the 2nd and 5th frames within the processing batch. (b) The U-Net
network (left) is composed of a CrossAttnBlock2D (right) in each layer. As shown, all self attention layers are changed into
extended attention (marked in gray).
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G. Denoiser Experiment
We evaluated the performance of the Stable Diffusion denoiser across spatiotemporal slices in an experiment. For this
experiment, we used 80 natural videos with different type of humans, animals and vehicles motion and of different
environments, taken from https://www.pexels.com/videos/. Initially, we encoded each video frame by frame
into the latent space of Stable Diffusion using a pretrained encoder. From these latent videos, we extracted frames and
spatiotemporal slices (y − t slices). Additionally, we randomly permuted the pixels of each extracted frame to create a
permuted frame. The permuted frames, which have noise-like patterns, serve as an out of distribution examplse to validate
our experiment. In the latent space we added different levels of noise, following Stable Diffusion noise scheduler, to each
frame, spatiotemporal slice and permuted frame. We then used Stable Diffusion pretrained denoiser to predict the added
noise. We repeated this process across videos for 10000 samples and calculated the mean square error (MSE) between the
predicted noise and the added noise.

This experiment results, displayed in Fig. 3, illustrate that Stable Diffusion pretrained denoiser can successfully predict the
noise added to spatiotemporal slices. It can be seen that for high noise levels the results for frames, spatiotemporal slices and
permuted frames are almost the same. For lower level of noise, it can be seen that Stable Diffusion denoiser can successfully
predict the noise added to spatiotemporal slices, and that it even predicts it better than it predicts the noise added to frames.
It also can be seen that the pretrained denoiser struggles with predicting the noise added to the permuted frames, which are
completely out of distribution examples.

As we used the pretrained denoiser over the spatiotemporal slices only to induce smoothness along the temporal direction,
its ability to successfully predict the added noise is all we need.
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H. Algorithm Pseudo Code
In this section we provide pseudo code for editing a video using Slicedit. We first cover the pseudo code for DDPM inversion
and editing using DDPM inversion, as presented by Huberman-Spiegelglas et al. (2023), as it is a key component of our
video editing algorithm. Then we provide the pseudo code for Slicedit.

H.1. Editing using DDPM Inversion

We note that this section is not a detailed explanation about editing using DDPM inversion, but a shorter one, relying on
some previous knowledge about diffusion reverse and forward process. For a detailed discussion about DDPM inversion
see Huberman-Spiegelglas et al. (2023).

Generating an image using diffusion process starts from a random noise vector, xT ∼ N (0, I) and iteratively denoises it
using the recursion

xτ−1 = µ̂τ (xτ ) + στzτ , τ = T, ..., 1 (S4)

where {zτ} are iid standard normal vectors and

µ̂τ (xτ , p) =
√
ᾱτ−1P (ϵθ(xτ , p)) +D(ϵθ(xτ , p)). (S5)

Where, ϵθ(·, p) is the denoiser, p is a text prompt, P (ϵθ(xτ )) = (xτ −
√
1− ᾱτ ϵθ(xτ ))/

√
ᾱτ is the predicted x0 and

D(ϵθ(xτ )) =
√
1− ᾱτ−1 − στ

2ϵθ(xτ ) is a direction pointing to xτ .

In order to edit a real signal, x0, it first needs to be inverted into a diffusion model noise space, meaning to extract the
{xT , zT , ..., z1} that produced this signal. These noise vectors are in the latent space, means their dimensions are 64×64×4.
Huberman-Spiegelglas et al. (2023) proposed the edit friendly DDPM noise space, which can be extracted using Alg. 1. In
Alg. 1 the denoiser is conditioned on a text prompt describing the real signal, psrc, however, the noise space can be extracted
without text conditioning.

Algorithm 1 Edit friendly DDPM inversion

Input : x0, psrc
Output : {xT , zT , ..., z1}
for τ = 1 to T do
ϵ̃ ∼ N (0, 1)
xτ ←

√
ᾱτx0 +

√
1− ᾱτ ϵ̃

end for
for τ = 1 to T do
zτ ← (xτ−1 − µ̂τ (xτ , psrc))/στ //shape 64× 64× 4

end for
return {xT , zT , ..., z1}

After extracting the noise space, the signal can be edited by applying the diffusion process and condition the denoiser on a
target prompt, describing the desired edit, as summarized in Alg. 2.

Algorithm 2 Editing

Input : {xT , zT , ..., z1, ptar}
Output : x̃0

x̃T ← xT

for τ = T to 1 do
x̃τ−1 ← µ̂τ (x̃τ , ptar) + στzτ

end for
return x̃0
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H.2. Slicedit

Slicedit follows a similar structure, mainly first inverting the input video, I0, consisting N frames, into edit friendly noise
space and then applying the diffusion process, while conditioning the denoiser on a text prompt. A key difference is the
denoiser itself, as in Slicedit the denoiser is ϵV

θ (·, p), which is described in detail in Sec. 4.

The resulting algorithm, Alg. 3, given with the notations from the main paper is as follows

Algorithm 3 Slicedit video editing

Input : I0, psrc, ptar
Output : J0
// Video inversion
for τ = 1 to T do
ϵ̃ ∼ N (0, 1)
Iτ ←

√
ᾱτI0 +

√
1− ᾱτ ϵ̃

end for
for τ = 1 to T do
Zτ ← (Iτ−1 − µ̂V

τ (Iτ , psrc))/στ //shape N × 64× 64× 4
Qτ ,Kτ ← ϵV

θ (·, psrc) // Keep keys and queries of the input video
end for
// Video editing
JT ← IT
for τ = T to 1 do
ϵV
θ (·, ptar)← Qτ ,Kτ // Inject input video keys and queries to the edited video
Jτ−1 ← µ̂V

τ (Jτ , ptar) + στZτ

end for
return J0

where µ̂V
τ (·, p) =

√
ᾱτ−1P (ϵV

θ (·, p)) +D(ϵV
θ (·, p)) and ϵV

θ (·, p) is defined in Eq. 1.
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